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AN INVESTIGATION INTO POSSIBLE STRUCTURAL CHANGES IN NASDAQ VOLATILITY 
 
Motivation: Everyone wants equity liquidity and fewer and fewer agents want to provide it 
 
“Recently, however, the NASDAQ 100’s volatility has been increasing as it swats away 10% 
drops like so many mosquitoes.  This behavior is far more consistent with that of physical 
commodities like soybeans or natural gas, where commercial buyers seek protection from higher 
prices.  Which buyers are panicking for protection?  While hard data are not available for 
NASDAQ 100 futures, we can surmise that the likely suspects are hedge funds that have shorted 
the stratospheric index, mutual funds that need to buy in order to maintain their competitive rank, 
and market makers who must take opposite sides of long option trades.” 
 
 Howard Simon, “The Energizer NASDAQ”, TheStreet.com, February 9, 2000 
 
“Volatility is one of the few things people will agree on in today’s market.  Though some will say 
tech stocks will soon climb anew, others think the baton is being passed to the Old Economy 
stocks for a spell and still others think the whole shebang is heading lower, more chop is a 
constant in everybody’s outlook.  ‘For the next few months I think we’ll see volatility,’ said Robert 
Dickey, managing director of technical analysis at Dain Rauscher Wessels in Minneapolis. ‘It’s a 
trader’s delight and a real frustration for investors.’” 
 
 Justin Lahart, “Traders Sort Through an Ordinary, Hugely Volatile Session”, 
 TheStreet.com, April 10, 2000 
 
It seems like everyone is interested in trading stocks these days.  In early April, when the 
NASDAQ had one of its largest single-day point drops, it was remarkable to me how many people 
at school were involved in trading (and judging by their faces, margin trading).  And most of these 
people are price-takers.  Why is everyone so interested in the equity markets?  The spectacular 
bull run of the 1990s, including most notably the fantastic performance of the NASDAQ in 1999 in 
which the index yielded in excess of 70%, much of it accumulated in the last quarter, helps 
explain this phenomenon.  Add to that demographic pressure from a maturing baby boom 
generation, low yields on government fixed income securities and a booming economy and there 
is a tremendous demand for liquidity.  
 
On the supply side, the traditional providers of liquidity are pulling out of the market-making 
business (or, at least, they are scaling back their presence).  The first critical factor in the 
withdrawal of liquidity in the capital markets is the failure of large-scale liquidity providers such as 
Long Term Capital Management.  This hedge fund, hedge funds that emulated its style, and 
investment and commercial bank proprietary trading desks that piggybacked on its trades all were 
traditional sellers of implied volatility.  With the losses of 1998, these sellers of liquidity found it 
difficult to raise or maintain their capital.  Bank management instructed proprietary trading desks 
to curtail, or, in some cases, eliminate their risk profile.  Investment banks merged with 
commercial banks, as took place in the alliance between Salomon Brothers and Citibank.  Other 
investment banks listed their shares in the public markets and adopted a more fee-reliant 
business plan, one that de-emphasized the risky profit stream of proprietary trading.  This 
reduction in equity derivatives liquidity was compounded by extraordinary losses in equity 
derivatives revealed at Union Bank of Switzerland during the implementation of its merger with 
Swiss Bank. There is also the question of the still-to-be-determined effect that the electronic 
exchanges (ECNs) like Island and Archipelago on market liquidity. 
 
Question: Did NASDAQ volatility structurally change in August 1998? 
 
This paper discusses a time series analysis of the NASDAQ 100 futures contract (quoted on the 
Chicago Mercantile Exchange).  I picked the NASDAQ because its volatility (both implied and 
actual) has far exceeded the volatility of the S&P 500 and because NASDAQ volatility has 
behaved over the past two years more like what one would expect from a commodity than from 
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an equity index.  Equity index volatility typically tends to spike on downturns and cool off on 
rallies, perhaps because of the use of such techniques as portfolio insurance and covered call 
writing.  This typical behavior might also be attributable to risk aversion on the part of individual 
investors who do not want to short-sell stock, choosing to participate only by buying stock or by 
closing out existing long positions.   
 
The heavy use of margins by NASDAQ day-traders and speculators may explain some of the 
smoothing of volatility asymmetry here.  Individual investors who buy stock on margin may be 
more likely to short-sell stock since buying stock and short-selling stock are symmetric in terms of 
their margin requirements.   
 
Commodity volatility resembles this high-margin NASDAQ model in that players in the commodity 
markets tend to use futures contracts that require margin from all investors.  Commodity volatility 
is high and does not display a persistent asymmetry related to the direction of the market.  In 
commodity markets, there are both natural sellers (commodity producers) and natural buyers 
(commodity end users). 
 
I have taken my data from Datastream: symbol NASA100.  The data I am using is from the 
inception of the contract’s tracking on January 2, 1983 to February 29, 2000. 
 
I will perform a time series analysis on the NASDAQ 100 futures index and then I will use the 
residuals from the best time series analysis to model the volatility of the index.   
 
Descriptive Statistics: The data suggests a unit-root process 
 
The first thing that stands out from looking at the chart of the NASDAQ 100’s performance is that 
the series seemed fairly stable until late 1994, after the Federal Reserve’s tightening sequence 
was over and the current bull market began.   The series then appeared to have another kind of 
performance until early 1999 after which it began to gap higher. 
 

 
 

The correlogram displays a strong first-order partial 
autocorrelation (a coefficient of 0.996 and a first-
order Q-stat of 4445.8).  Notably, the serial 
correlation does not die down very quickly.  The 
subsequent partial autocorrelations are all negligible. 
The unit-root nature of the NASDAQ is confirmed by 
the Augmented Dickey Fuller test statistic for the 
series.  At 10.86631 (with 9 lags and no intercept or 
trend), the test statistic far exceeds the critical values 
(-1.9394 at a 5% confidence interval) below which 

we would reject the null hypothesis that the series is a unit root.   
 

Descriptive Statistics  
Number of Observations 4477 
Mean 529.86 
Median 278.1723 
Maximum 4256.997 
Minimum 98.77614 
Standard Deviation 656.8254 
Skewness 2.707093 
Kurtosis 11.1644 
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Modeling the NASDAQ 100 as an AR(1) process is consistent with current views of modeling the 
process for the S&P 500 Index.   
 
Performing the ADF unit root test for the truncated period from March 2, 1999 to February 29, 
2000, instead of over the whole period starting on January 1, 1983, we obtain a test statistic of 
3.469989 (vs. a 5% critical value of –1.9408 below which we would reject the null hypothesis of a 
unit root).  The correlogram for the truncated sample also shows that autocorrelation dies down 
much faster than the autocorrelation observed for the whole sample.  The first-order Q-stat is 
254.48 and the first-order partial autocorrelation is 0.982. 
 
I calculated the ADF test statistic for the series and for the first difference of the series over five 
possible samples to test the stationarity of the NASDAQ 100 futures series.  The results are 
summarized in the following table.  For each sample size, we cannot reject the null hypothesis of 
a unit root for the series but we can reject the null hypothesis of a unit root for the first difference 
of the series.   
 
Therefore, it makes sense to model the NASDAQ 100 time series as an AR(1) process. 
 

ADF Test Statistics Series 
(5% CI) 

First Difference of Series 
(5% CI) 

01/03/1983 02/29/2000 10.86631 
(-1.9394) 

-21.88034 
(-1.9394) 

01/03/1983 12/30/1994 1.593615 
(-1.9394) 

-17.92010 
(-1.9394) 

01/02/1995 07/31/1998 2.677869 
(-1.9397) 

-9.588391 
(-1.9397) 

08/31/1998 03/01/1999 1.184498 
(-1.9419) 

-3.445649 
(-1.9419) 

03/02/1999 02/29/2000 3.469989 
(-1.9408) 

-5.377652 
(-1.9408) 

 
NASDAQ 100 Returns: Returns are more interesting than levels 
 
For derivatives pricing, we are most interested in the volatility of the returns to a financial price, or 
in this case a financial index.1  To calculate the continuously compounded return, I computed the 
natural logarithm of the current period’s price divided by the previous period’s price.  These are 
plotted below.  Notice how the returns exhibit spiked volatility around the 1987 crash, after which 
they appear to settle down and how the volatility of returns picks up in a widening band post 
1994.  
 

                                                        
1 John C. Hull, Options, Futures and Other Derivative Securities, 2nd Edition, 1993, Prentice-Hall, 
NJ. 
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An ADF Unit Root Test on these returns over the entire sample period shows that we can reject 
the null hypothesis of a unit root at the 1% critical value with the test statistic computed as –
21.13945 and the 1% critical value equal to –2.5662.  From the correlogram of the returns series, 
the Q-Statistics from the first partial autocorrelation onwards have a p-value of 0.000, so that we 
can reject the null hypothesis that there is no autocorrelation up to order 36 (in the case of the 
test that I ran). 
 
AR Modeling: AR(1) is the most appropriate model using Information Criteria to judge 
 
Since we could not reject the null hypothesis that there was no autocorrelation in the NASDAQ 
100 Futures returns, I modeled up to AR(6) (using the same trimmed sample for each) and 
compared the results based upon the Schwartz Information Criterion.  That is, I chose the model 
with the lowest Schwartz Information Criterion value.  These are reported in the table below. 
 

 Schwartz Information Criterion Value 
AR(1) -5.687853 
AR(2) -5.686180 
AR(3) -5.684629 
AR(4) -5.682748 
AR(5) -5.682363 
AR(6) -5.680943 

 
Using the Schwartz Information Criterion, the AR(1) process over the same sample is superior to 
AR(2) through AR(6).  This is consistent with the thinking about the modeling of the returns on the 
Standard and Poor’s Index.  This is intuitively palatable since we can see from the data that the 
NASDAQ 100 futures index is fairly stable for most of its life. 
 
Dependent Variable: RN100 
Method: Least Squares 
Date: 04/18/00   Time: 23:06 
Sample(adjusted): 1/05/1983 2/29/2000 
Included observations: 4475 after adjusting endpoints 
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Variable Coefficient Std. Error t-Statistic Prob.    

      
C 0.000750 0.000210 3.563827 0.0004  

RN100(-1) 0.063874 0.014921 4.280745 0.0000  
      

R-squared 0.004080     Mean dependent var 0.000801  
Adjusted R-squared 0.003857     S.D. dependent var 0.014083  
S.E. of regression 0.014056     Akaike info criterion -5.691155  
Sum squared resid 0.883676     Schwarz criterion -5.688292  
Log likelihood 12735.96     F-statistic 18.32478  
Durbin-Watson stat 1.998134     Prob(F-statistic) 0.000019  

      
 
Note that the AR(1) specification of the returns over the full sample has a Durbin-Watson statistic 
of 1.998134, very close to 2 suggesting no further autocorrelation. 
 
However, looking at a graph of the residuals from the AR(1) estimate, this time estimated over the 
full sample period, less the first observation, we see a pattern of residuals that suggests 
heteroskedasticity, i.e. a process, the variance of which depends on time.   
 
From the correlogram of the residuals and the Q-Statistics reported in this correlogram, we 
cannot reject the null hypothesis that there is no autocorrelation in the residuals.  The Q-Statistic 
for the first-order partial autocorrelation is 0.0039.  Beyond the 21st lag, the Q-Statistic has a p-
value less than 0.05 (i.e. the 5% confidence interval).   
 

 
 
Heteroskedasticity: Various tests confirm that NASDAQ volatility is not constant 
 
The first check that I examined was a correlogram of the squared residuals generated by the 
AR(1) time series specification in EViews.   
 
ARCH or some sort of heteroskedastic pattern in the residuals is suggested by the non-zero 
partial autocorrelations with statistically significant Q-Statistics with lags out to roughly lag 6 or 7.  
The correlogram of the squared residuals from the returns AR(1) process is printed in the 
Appendix. 
 
Next, I considered the histogram of the residuals, specifically looking at the Jarque-Bera statistic.  
This test statistic gives an assessment of the normality of the distribution of the series in question, 
here the residuals from the AR(1) specification of the returns of the NASDAQ. 
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Under the null hypothesis that the distribution is a normal one, the Jarque-Bera probability gives 
the probability that the Jarque-Bera statistic exceeds the observed value in the case of the null 
hypothesis.  Here, because the probability is 0, we reject the null hypothesis of normally 
distributed residuals.  The distribution of the residuals appears to exhibit a remarkable degree of 
kurtosis (with a value of 11.58554 compared to a value of 3 for the normal distribution). 
 
The following table summarizes the results of different Breusch-Godfrey Serial Correlation LM 
Tests on the residuals of the AR(1) specification applied to the NASDAQ returns, with test lags up 
to lag 12. The null hypothesis for this test is that there is no serial correlation in the residuals up to 
lag order p.  We cannot reject the null hypothesis up to an order of around 6, using roughly a 5-
7% degree of confidence interval.  The p-value for lag order 7 clearly rejects the null hypothesis 
of no serial correlation in the residuals up to order 7 at the 5% confidence interval. 
 

P B-G Serial Correlation LM Test Statistic P-Value 
1 0.933690 0.333906 
2 1.434488 0.488096 
3 2.442247 0.485819 
4 2.498476 0.644909 
5 9.575452 0.088198 
6 10.86165 0.092748 
7 15.80402 0.026968 
8 15.81079 0.045170 
9 16.46096 0.057857 
10 17.05233 0.073214 
11 18.57261 0.069210 
12 19.88711 0.069252 

 
Under the Engle ARCH LM test, the null hypothesis is that there is no autocorrelated conditional 
heteroskedasticity in the residuals up to order q.  The following table summarizes the results of 
ARCH LM tests up to order 12. 
 

Q Engle ARCH LM Test Statistic P-Value 
1 284.3722 0.0000 
2 506.9169 0.0000 
3 659.1000 0.0000 
4 662.4057 0.0000 
5 796.6272 0.0000 
6 796.4770 0.0000 
7 811.5320 0.0000 
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8 824.3319 0.0000 
9 825.8176 0.0000 
10 835.6991 0.0000 
11 836.7724 0.0000 
12 842.8438 0.0000 

 
The ARCH LM affirms our intuition that some sort of persistence characterizes the variance of the 
residuals.  Options traders in financial markets often remark that when the price action is volatile, 
it tends to be volatile for a while and when trading is calm, it tends to be so for a period of time as 
well.  Volatility in financial markets appears to trend. 
 
ARCH(1): My first attempt to explain the serially correlated residuals is straightforward 
 
I have chosen the benchmark for the modeling of the heteroskedastic residuals from the AR(1) 
specification of the NASDAQ 100 returns to be the ARCH(1) specification.  This is a natural 
starting point and I anticipate that it will not be suitable because of the persistence in the residuals 
observed with the heteroskedasticity tests above.  However, it provides a useful point of 
reference for our subsequent analysis. 
 
The objective is to model the error process in such a way that the leftover is white noise.  I can 
check the effectiveness of any ARCH-type specification by using the same tests that I used to 
identify the heteroskedasticity of the residuals from the AR(1) specification of the NASDAQ 
returns in the first case. 
 
Dependent Variable: RN100 
Method: ML – ARCH 
Date: 04/18/00   Time: 23:21 
Sample(adjusted): 1/05/1983 2/29/2000 
Included observations: 4475 after adjusting endpoints 
Convergence achieved after 18 iterations 

     
 Coefficient Std. Error z-Statistic Prob.   
     

C 0.000789 0.000188 4.203338 0.0000 
RN100(-1) 0.087570 0.013605 6.436376 0.0000 

     
        Variance Equation 
     

C 0.000140 2.53E-06 55.32047 0.0000 
ARCH(1) 0.283636 0.014012 20.24174 0.0000 

     
R-squared 0.003502     Mean dependent var 0.000801 
Adjusted R-squared 0.002833     S.D. dependent var 0.014083 
S.E. of regression 0.014063     Akaike info criterion -5.794778 
Sum squared resid 0.884190     Schwarz criterion -5.789052 
Log likelihood 12969.82     F-statistic 5.236868 
Durbin-Watson stat 2.044721     Prob(F-statistic) 0.001316 

     
 
 
In the ARCH(1) specification, looking at the Q-Statistics from the correlogram of the residuals, I 
cannot reject the null hypothesis that there is no serial correlation in the residuals until 
approximately order 22.  See the Appendix for the ARCH(1) residuals correlogram. 
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However, the Q-Statistics from the correlogram of the squared residuals lead me to reject the null 
hypothesis that the residuals are not serially correlated from the first partial autocorrelation.  See 
the Appendix, as well. 
 
Looking at the histogram of the residuals, the Jarque-Bera test statistic rejects the null hypothesis 
that the distribution of the residuals is a normal one. 
 

 
 
Finally, we can reject the null hypothesis of homoskedastic residuals using the ARCH LM Test of 
order 2, for which we obtain a test statistic of 58.99215 and a p-value of 0.0000. 
 
Volatility Modeling: I will use different models of volatility to test for structural change 
 
In the second part of this paper, I will introduce more sophisticated ARCH-based models to 
address the heteroskedasticity of the residuals obtained from the AR(1) specification of the 
returns of the NASDAQ 100 futures index. 
 
Specifically, I intend to use the following models to test the hypothesis that NASDAQ volatility 
structurally changed in August 1998: 
 

1. Autocorrelated Conditional Heteroskedasticity (ARCH) 
2. Generalized Autocorrelated Conditional Heteroskedasticity (GARCH) 
3. Threshold Autocorrelated Conditional Heteroskedasticity (TARCH) 

 
In each case, I will: 
 

1. Apply the error model to the AR(1) specification of the NASDAQ returns 
2. Determine the “best” version of each error model and 
3. Test for a structural change in the volatility of returns by inserting a dummy variable in the 

error model.   
 
I will determine the “best” version of each error model by using likelihood ratio tests, testing down 
from a big structure to a smaller structure, i.e. from a more generalized specification to a more 
restricted one. 
 
This dummy variable CRISIS will be equal to zero before August 1, 1998 and it will take the value 
1 after August 1, 1998. 
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ARCH 
 
The first specification of the error model that I examined was the Autocorrelated Conditional 
Heteroskedasticity specification, applied to the AR(1) model of the NASDAQ 100 returns.   
 
 RN100 = C + γ + γ1RN100-1 + εt 
 
 σt

2  = ω + α1εt-1
2 

 
I am modeling the variance as having some persistence, in this case persistence determined by 
the first order lag of the squared residual from the AR(1) specification.  I can extend this to order 
ARCH(p) of the underlying AR(1) specification by adding p lagged squared residual terms in the 
conditional variance specification. 
 
I did this for ARCH(1) to ARCH(9), using the same sample, and I compared the value of each 
specification by using the log-likelihood function values for each specification.  These are as 
follows: 
 

ARCH(p) 
Loglikelihood 
Function 

1 12969.816280 
2 13084.863506 
3 13135.158182 
4 13177.822363 
5 13210.297626 
6 13231.699582 
7 13234.877406 
8 13238.175605 
9 13246.828138 

 
I can use these Loglikelihood function values to obtain test statistics with which we can compare 
the efficacy of the different specifications of the variance model.  These test statistics are 
distributed as Chi-Squared with the number of degrees of freedom equal to the number of 
restrictions.  Comparing an ARCH(2) to a restricted ARCH(1) specification means that the test 
statistic would be distributed as Chi-Squared with one degree of freedom, for example. 
 
ARCH(1) is a restricted version of ARCH(9) in which the coefficients on the lagged squared 
residual terms for lags 2 through 9 are restricted to be equal to zero.  I used a likelihood ratio test 
to compare the different ARCH models.  I found that I rejected every ARCH(.) specification other 
than the ARCH(9) specification, i.e. the least restricted one.  See the Appendix for a table listing 
the different likelihood ratio tests I performed and a description of the serial correlation properties 
of both the residuals and the squared residuals in these cases.  The ARCH(9) specification has 
no serial correlation out to the 23rd lag in the residuals and no serial correlation in the squared 
residuals beyond the 36th lag. 
 
The estimation output for the ARCH(9) specification, using an AR(1) process for the NASDAQ 
100 returns series is as follows: 
 
Dependent Variable: RN100 
Method: ML – ARCH 
Date: 05/07/00   Time: 13:57 
Sample(adjusted): 1/05/1983 2/29/2000 
Included observations: 4475 after adjusting endpoints 
Convergence achieved after 22 iterations 
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 Coefficient Std. Error z-Statistic Prob.   
C 0.000775 0.000170 4.563279 0.0000 

RN100(-1) 0.111788 0.016739 6.678488 0.0000 
        Variance Equation 

C 6.25E-05 2.00E-06 31.21588 0.0000 
ARCH(1) 0.128716 0.009609 13.39556 0.0000 
ARCH(2) 0.115777 0.014234 8.133612 0.0000 
ARCH(3) 0.063849 0.013870 4.603359 0.0000 
ARCH(4) 0.107363 0.014021 7.657208 0.0000 
ARCH(5) 0.084439 0.016072 5.253953 0.0000 
ARCH(6) 0.070065 0.013872 5.050792 0.0000 
ARCH(7) 0.013883 0.012923 1.074243 0.2827 
ARCH(8) 0.033181 0.013674 2.426618 0.0152 
ARCH(9) 0.060400 0.013175 4.584573 0.0000 

R-squared 0.001764     Mean dependent var 0.000801 
Adjusted R-squared -0.000697     S.D. dependent var 0.014083 
S.E. of regression 0.014088     Akaike info criterion -5.915007 
Sum squared resid 0.885731     Schwarz criterion -5.897828 
Log likelihood 13246.83     F-statistic 0.716901 
Durbin-Watson stat 2.092052     Prob(F-statistic) 0.723399 

 
The only ARCH lag with an insignificant t-statistic is the 7th lag.  The p-value for the F-Statistic for 
the null hypothesis that all of the coefficients are zero is 0.723399.  Therefore, we cannot reject 
the null hypothesis that all of the coefficients are jointly equal to zero. 
 
I then tested the possibility of a structural change in the volatility of the NASDAQ 100 return by 
including a dummy variable, called CRISIS, that is equal to zero before August 1, 1998 and equal 
to 1 after August 1, 1998 in the ARCH(9)-AR(1) specification.  This dummy variable is included in 
the variance specification so that the variance set up looks as follows: 
 

RN100 = C + γ + γ1RN100-1 + εt 
 
 σt

2  = ω + α1εt-1
2 + α2εt-2

2 + α3εt-3
2 + α4εt-4

2 + α5εt-5
2 + α6εt-6

2 + α7εt-7
2 + α8εt-8

2 
   + α9εt-9

2 + βCRISISt 

 
 
Dependent Variable: RN100 
Method: ML – ARCH 
Date: 05/07/00   Time: 14:03 
Sample(adjusted): 1/05/1983 2/29/2000 
Included observations: 4475 after adjusting endpoints 
Convergence achieved after 25 iterations 

 Coefficient Std. Error z-Statistic Prob.   
C 0.000762 0.000173 4.406647 0.0000 

RN100(-1) 0.110399 0.016893 6.535248 0.0000 
        Variance Equation 

C 6.89E-05 2.25E-06 30.62097 0.0000 
ARCH(1) 0.112082 0.008242 13.59960 0.0000 
ARCH(2) 0.099804 0.014416 6.923287 0.0000 
ARCH(3) 0.054902 0.013455 4.080254 0.0000 
ARCH(4) 0.073653 0.013902 5.297987 0.0000 
ARCH(5) 0.079447 0.016031 4.955955 0.0000 
ARCH(6) 0.057731 0.013213 4.369134 0.0000 
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ARCH(7) 0.008124 0.011879 0.683860 0.4941 
ARCH(8) 0.027610 0.013294 2.076918 0.0378 
ARCH(9) 0.040971 0.012688 3.229229 0.0012 
CRISIS 0.000194 3.20E-05 6.060045 0.0000 

R-squared 0.001903     Mean dependent var 0.000801 
Adjusted R-squared -0.000781     S.D. dependent var 0.014083 
S.E. of regression 0.014088     Akaike info criterion -5.926869 
Sum squared resid 0.885608     Schwarz criterion -5.908259 
Log likelihood 13274.37     F-statistic 0.709055 
Durbin-Watson stat 2.089366     Prob(F-statistic) 0.744108 

 
The crisis variable has a t-statistic equal to 6.060045 with a corresponding p-value of 0.0000.  
The F-Statistic for the joint null hypothesis that all of the slope coefficients is equal to zero is still 
such that we cannot reject the null hypothesis.  Notice also that including the crisis variable 
increases the p-value for the t-statistic of the ARCH(7) coefficient, meaning that it is increasingly 
less likely that we can reject the null hypothesis that the coefficient α7 is zero. 
 
Doing a Wald coefficient test for the Crisis coefficient also yielded a p-value of zero for the null 
hypothesis that the Crisis coefficient was equal to zero. 
 
Wald Test: 
Equation: ARCH9AR1CRISIS 
Null Hypothesis: C(13) = 0 
F-statistic 36.72414  Probability 0.000000 
Chi-square 36.72414  Probability 0.000000 

 
I also did a likelihood ratio test in which I compared the restricted ARCH(9) specification without 
the CRISIS dummy variable to the ARCH(9) specification that included the CRISIS dummy 
variable.  I obtained a test statistic of 55.0835936.  The critical value under a Chi-Squared 
distribution with one degree of freedom is 3.8414553.  Therefore, we can reject the null 
hypothesis that the coefficient on the CRISIS dummy variable is zero. 
 
The coefficient for the crisis variable is very small.  This means that the mean for the variance 
term shifts higher by a smaller, but statistically significant, amount in the post-crisis period.  We 
cannot infer anything about the differences in symmetry before and after the crisis pivotal date 
from this simple ARCH specification of the variance. 
 
The inclusion of the dummy variable seems to have little effect on the coefficients in the AR(1) 
specification.  Plotting the difference between the conditional variance from the ARCH(9)-AR(1) 
specification with the crisis dummy variable in the variance specification and the conditional 
variance from the ARCH(9)-AR(1) specification without the crisis variable confirms this 
description.  Before the crisis pivotal date, the crisis variance is below the non-crisis variance, by 
a small amount.  After the crisis pivotal date, the crisis variance is above the non-crisis variance 
uniformly.  
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GARCH 
 
The GARCH specification includes in the variance model lagged terms from the forecast 
variance, as well as lagged terms for the squared residual (as in the ARCH specification).  The 
GARCH(1,1) specification is set up as follows: 
 

RN100 = C + γ + γ1RN100-1 + εt 
 
 σt

2  = ω + α1εt-1
2 + δσt-1

2 

 
In general a GARCH(p,q) model has p lagged squared residual terms and q lagged forecast 
variance terms.  Note that the ARCH(p) specification is a restricted form of the GARCH(p,q) 
specification of the variance in which the lagged forecast variance terms are ignored.   
 
Including lagged forecast variance terms may make sense for a financial time series if market 
participants are engaged in the process of updating their forecasts of variance as time 
progresses.  This may turn out to be a more important part of the NASDAQ volatility story than 
lagged squared residual terms from the AR(1) process, which in and of themselves have a less 
intuitive meaning in the context of a traded financial series. 
 
The crisis variable can also be included here as a dummy variable in the variance specification, in 
the same way that we included the crisis variable as a dummy variable in the ARCH specification.  
For example in the GARCH(1,1) specification, 
 

RN100 = C + γ + γ1RN100-1 + εt 
 
 σt

2  = ω + α1εt-1
2 + δσt-1

2 + CRISISt 

 
I first performed a series of GARCH(p,1) specifications and I obtained the following log-likelihood 
values from the estimation output. 
 

GARCH() 
Log-likelihood 
Function 
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GARCH(1,1) 13264.90399 
GARCH(2,1) 13270.31474 
GARCH(3,1) 13282.22611 
GARCH(4,1) 13283.37438 
GARCH(5,1) 13276.48047 
GARCH(6,1) 13289.40504 
GARCH(7,1) 13291.20439 
GARCH(8,1) 13281.98015 
GARCH(9,1) 13288.47226 
 
Something odd occurs at GARCH(7,1).  The Loglikelihood value peaks at GARCH(7,1).  Since 
GARCH(7,1) is a restricted version of GARCH(9,1), the Loglikelihood value for GARCH(9,1) 
should be higher than the Loglikelihood value for GARCH(7,1), if only marginally so, as we 
observed in the ARCH likelihood ratio testing above. 
 
Performing a likelihood-ratio test in which we compare GARCH(9,1) and GARCH(1,1), we obtain 
a test statistic of 47.13653 (with a 5% critical value of 15.507312).  We reject the null hypothesis 
that the restrictions hold true. 
 
However, looking at the estimation output for GARCH(9,1), we can see that most of the ARCH 
coefficients beyond the 1st lag have t-statistics that do not allow us to reject the null hypothesis 
that these coefficients are individually equal to zero.  The single GARCH coefficient has a p-value 
of 0.0000 for the null hypothesis that it is zero.  This makes sense given the intuition that traders 
adjust their forecast variances to reflect the evolution of prices, a phenomenon that corresponds 
to the GARCH terms.   
 
Dependent Variable: RN100 
Method: ML – ARCH 
Date: 05/07/00   Time: 15:13 
Sample(adjusted): 1/05/1983 2/29/2000 
Included observations: 4475 after adjusting endpoints 
Convergence achieved after 38 iterations 

 Coefficient Std. Error z-Statistic Prob.   
C 0.000732 0.000168 4.351340 0.0000 

RN100(-1) 0.118141 0.016752 7.052444 0.0000 
        Variance Equation 

C 1.07E-06 2.28E-07 4.680486 0.0000 
ARCH(1) 0.127668 0.007874 16.21445 0.0000 
ARCH(2) -0.014586 0.018274 -0.798210 0.4247 
ARCH(3) -0.065523 0.022075 -2.968273 0.0030 
ARCH(4) 0.032266 0.024523 1.315735 0.1883 
ARCH(5) -0.026305 0.023160 -1.135780 0.2560 
ARCH(6) 0.000256 0.014533 0.017616 0.9859 
ARCH(7) -0.032704 0.021802 -1.500049 0.1336 
ARCH(8) -0.011056 0.018024 -0.613433 0.5396 
ARCH(9) 0.011452 0.008823 1.297900 0.1943 

GARCH(1) 0.971857 0.004678 207.7708 0.0000 
R-squared 0.001132     Mean dependent var 0.000801 
Adjusted R-squared -0.001554     S.D. dependent var 0.014083 
S.E. of regression 0.014094     Akaike info criterion -5.933172 
Sum squared resid 0.886292     Schwarz criterion -5.914562 
Log likelihood 13288.47     F-statistic 0.421339 
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Durbin-Watson stat 2.104433     Prob(F-statistic) 0.955984 
 
Furthermore, the F-Statistic for the null hypothesis that all of the coefficients are jointly equal to 
zero returns a p-value of 0.955984.  We cannot reject this null hypothesis. 
 
Therefore, I will consider GARCH(1,1) through GARCH(1,9). 
 
Again, I notice that there is something strange about the 7th lag, this time on the GARCH term, 
when comparing Loglikelihood values. 
 

GARCH() 
Log-likelihood 
Function 

GARCH(1,1) 13264.90399 
GARCH(1,2) 13266.05432 
GARCH(1,3) 13268.35859 
GARCH(1,4) 13271.43544 
GARCH(1,5) 13272.61838 
GARCH(1,6) 13272.07602 
GARCH(1,7) 13272.00905 
GARCH(1,8) 13276.96115 
GARCH(1,9) 13277.11525 
 
This time, I started with the GARCH(1,9) specification and began by comparing it to the 
GARCH(1,8) specification, using a likelihood ratio test.  I found that the GARCH(1,8) was the 
superior specification of the GARCH(1,q) setups. 
 
Unrestricted Restricted Number of Test 5% Critical  Reject/Not 
Specification Specification Restrictions Statistic Value 5% P-Value Restrictions 
GARCH(1,9) GARCH(1,1) 8 24.422509 15.50731249 0.001946131 Reject  
GARCH(1,9) GARCH(1,8) 1 0.308191 3.841455338 0.57879239 Not Reject 
GARCH(1,8) GARCH(1,7) 1 9.904211 3.841455338 0.00164901 Reject  
GARCH(1,8) GARCH(1,6) 2 9.770272 5.991476357 0.007558097 Reject 
GARCH(1,8) GARCH(1,5) 3 8.685548 7.814724703 0.033777462 Reject 
GARCH(1,8) GARCH(1,4) 4 11.051420 9.487728465 0.025992167 Reject 
GARCH(1,8) GARCH(1,3) 5 17.205127 11.07048257 0.004126757 Reject 
GARCH(1,8) GARCH(1,2) 6 21.813665 12.59157742 0.001308694 Reject 
GARCH(1,8) GARCH(1,1) 7 24.114318 14.06712726 0.001087812 Reject 
 
See the Appendix for a comparison of the serial correlation properties of the residuals and the 
squared residuals for the GARCH(1,8) case. 
 
The estimation output from the GARCH(1,8) case is: 
 
Dependent Variable: RN100 
Method: ML - ARCH 
Date: 05/07/00   Time: 15:50 
Sample(adjusted): 1/05/1983 2/29/2000 
Included observations: 4475 after adjusting endpoints 
Convergence achieved after 31 iterations 

 Coefficient Std. Error z-Statistic Prob.   
C 0.000700 0.000176 3.969811 0.0001 
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RN100(-1) 0.115488 0.017318 6.668834 0.0000 
        Variance Equation 

C 7.10E-06 6.75E-07 10.52936 0.0000 
ARCH(1) 0.126142 0.007058 17.87150 0.0000 

GARCH(1) 0.465515 0.092597 5.027339 0.0000 
GARCH(2) 0.103991 0.135736 0.766128 0.4436 
GARCH(3) 0.123381 0.147956 0.833906 0.4043 
GARCH(4) 0.064826 0.145589 0.445264 0.6561 
GARCH(5) -0.006150 0.135539 -0.045376 0.9638 
GARCH(6) -0.149670 0.140379 -1.066190 0.2863 
GARCH(7) 0.116124 0.142411 0.815414 0.4148 
GARCH(8) 0.115570 0.104443 1.106539 0.2685 

R-squared 0.001416     Mean dependent var 0.000801 
Adjusted R-squared -0.001046     S.D. dependent var 0.014083 
S.E. of regression 0.014090     Akaike info criterion -5.928474 
Sum squared resid 0.886040     Schwarz criterion -5.911295 
Log likelihood 13276.96     F-statistic 0.575134 
Durbin-Watson stat 2.099289     Prob(F-statistic) 0.850581 

 
I then tested the possibility of a structural change in the volatility of the NASDAQ 100 return by 
including in the GARCH(1,8)-AR(1) specification a dummy variable, called CRISIS, that is equal 
to zero before August 1, 1998 and equal to 1 after August 1, 1998.  This dummy variable is 
included in the variance specification so that the variance set up looks as follows: 
 

RN100 = C + γ + γ1RN100-1 + εt 
 
 σt

2  = ω + α1εt-1
2 + δ1σt-1

2 + δ2σt-2
2 + δ3σt-3

2  + δ4σt-4
2  + δ5σt-5

2  + δ6σt-6
2 + δ7σt-7

2 + δ8σt-8
2  

+ βCRISISt 
 
The estimation output is as follows: 
 
Dependent Variable: RN100 
Method: ML - ARCH 
Date: 05/07/00   Time: 16:31 
Sample(adjusted): 1/05/1983 2/29/2000 
Included observations: 4475 after adjusting endpoints 
Convergence achieved after 34 iterations 

 Coefficient Std. Error z-Statistic Prob.   
C 0.000697 0.000177 3.940981 0.0001 

RN100(-1) 0.115341 0.017368 6.641105 0.0000 
        Variance Equation 

C 1.04E-05 9.61E-07 10.86414 0.0000 
ARCH(1) 0.127744 0.006701 19.06390 0.0000 

GARCH(1) 0.384745 0.085513 4.499257 0.0000 
GARCH(2) 0.194780 0.123501 1.577148 0.1148 
GARCH(3) 0.183715 0.130713 1.405488 0.1599 
GARCH(4) 0.028704 0.123348 0.232704 0.8160 
GARCH(5) -0.063411 0.115786 -0.547652 0.5839 
GARCH(6) -0.201583 0.115507 -1.745201 0.0809 
GARCH(7) 0.118091 0.116614 1.012673 0.3112 
GARCH(8) 0.156781 0.094970 1.650848 0.0988 

CRISIS 3.26E-05 7.43E-06 4.389337 0.0000 
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R-squared 0.001430     Mean dependent var 0.000801 
Adjusted R-squared -0.001255     S.D. dependent var 0.014083 
S.E. of regression 0.014092     Akaike info criterion -5.933443 
Sum squared resid 0.886027     Schwarz criterion -5.914832 
Log likelihood 13289.08     F-statistic 0.532620 
Durbin-Watson stat 2.099001     Prob(F-statistic) 0.894932 

 
The t-statistic for the CRISIS coefficient has a p-value of zero (in large part due to the small 
standard error for the coefficient estimate) stating that we would reject the null hypothesis that the 
coefficient on CRISIS is zero. 
 
A Wald test for this coefficient confirms this result. 
 
Wald Test: 
Equation: GARCH18AR1CRISIS 
Null Hypothesis: C(13)=0 
F-statistic 19.26628  Probability 0.000012 
Chi-square 19.26628  Probability 0.000011 

 
A likelihood ratio test comparing the GARCH(1,8)-AR(1) model without the crisis variable (the 
restricted specification) to the GARCH(1,8)-AR(1) model with the crisis variable (the unrestricted 
specification) also confirms this result.  The computed test statistic is 24.2376928, which is much 
greater than the significant value of a Chi-Squared distribution with one degree of freedom, equal 
to 3.8414553, leading us to reject the null hypothesis that the restriction holds true. 
 
Plotting the difference of the variance from a GARCH(1,8) specification that does not include the 
crisis variable and the GARCH(1,8) specification that does include the crisis variable, we see the 
similar pattern to the one observed in the ARCH case.  There is a discrete jump in the mean of 
the variance at the CRISIS pivotal date of August 1, 1998. 
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Note that the difference is exaggerated during the stock market crash of 1987 because the 
GARCH(1,8) specification, before August 1, 1998, without the crisis variable generally 
overestimates the variance compared to the GARCH(1,8) specification with the crisis variable (i.e. 
the difference between the two tends to be negative).  This effect is exploded during the unusual 
volatility of the Fall of 1987. 
 
TARCH 
 
The Threshold Autoregressive Conditional Heteroskedasticity Model is a generalization of the 
standard GARCH model to include in the variance forecast an asymmetric reaction to (in this 
case) positive and negative lagged residuals in the NASDAQ 100 performance.  TARCH(1,1) 
may be represented as, 
 

RN100 = C + γ + γ1RN100-1 + εt 
 
 σt

2  = ω + α1εt-1
2 + δσt-1

2 + βεt-1dt-1 

 

 dt-1 = 1 if εt< 0 and dt-1 = 0 otherwise 
 
Higher-order TARCH specifications would resemble higher-order GARCH setups with the 
inclusion of the single βεt-1dt-1 term. 
 
If β is equal to zero, then the impact of a negative residual (bad news) and the impact of a 
positive residual (good news) is asymmetric. 
 
TARCH is compelling here in light of the institutional factors involved in equity trading.  Recall that 
I stated in the description of the problem that equity volatility typically tends to be asymmetric, 
demonstrating higher volatility in the event of a downturn in the equity market than it does in the 
case in which returns are positive.  This is certainly the case for the “skew” in the equity options 
markets in which deep out-of-the-money equity calls often trade at an implied volatility discount to 
the implied volatility of at-the-money options and out-of-the-money puts trade at an implied 
volatility premium to the at-the-money options.  This may be due to investor reticence to hold 
losing positions, the effect of margin in clearing out losing positions early (and the use of margin 
predominantly to buy stocks by individual investors), institutional obstacles to short-selling and 
the use of strategies such as covered call writing that involve selling out-of-the-money calls.  
 
I ran TARCH(1,1) to TARCH(1,9), using the same logic as in the GARCH modeling to restrict the 
ARCH term p to 1.  With a series of likelihood ratio tests, I found that the most appropriate 
TARCH representation here of the variance from the AR(1) specification of the underlying 
NASDAQ 100 index was the TARCH(1,6). 
 
 
Unrestricted Restricted Number of Test 5% Critical  Reject/Not 
Specification Specification Restrictions Statistic Value 5% P-Value Restrictions 
TARCH(1,9) TARCH(1,1) 8 35.708911 15.50731249 1.98508E-05 Reject  
TARCH(1,9) TARCH(1,8) 1 0.316201 3.841455338 0.573899581 Not Reject 
TARCH(1,8) TARCH(1,7) 1 3.611317 3.841455338 0.057387679 Not Reject 
TARCH(1,7) TARCH(1,6) 1 2.657365 3.841455338 0.103071364 Not Reject 
TARCH(1,6) TARCH(1,5) 1 12.378271 3.841455338 0.000434359 Reject 
TARCH(1,6) TARCH(1,4) 2 8.852922 5.991476357 0.011956732 Reject 
TARCH(1,6) TARCH(1,3) 3 21.739599 7.814724703 7.38965E-05 Reject 
TARCH(1,6) TARCH(1,2) 4 28.437117 9.487728465 1.01703E-05 Reject 
TARCH(1,6) TARCH(1,1) 5 29.124028 11.07048257 2.1924E-05 Reject 
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In the TARCH(1,6) setup without the inclusion of the CRISIS variable, I obtain the following 
estimation output: 
 
Dependent Variable: RN100 
Method: ML - ARCH 
Date: 05/07/00   Time: 17:04 
Sample(adjusted): 1/05/1983 2/29/2000 
Included observations: 4475 after adjusting endpoints 
Convergence achieved after 23 iterations 

 Coefficient Std. Error z-Statistic Prob.   
C 0.000451 0.000176 2.561299 0.0104 

RN100(-1) 0.123196 0.017072 7.216442 0.0000 
        Variance Equation 

C 6.97E-06 7.52E-07 9.271190 0.0000 
ARCH(1) 0.054131 0.009029 5.995224 0.0000 

(RESID<0)*ARCH(1) 0.110852 0.012533 8.844792 0.0000 
GARCH(1) 0.765817 0.103283 7.414759 0.0000 
GARCH(2) -0.154275 0.112317 -1.373562 0.1696 
GARCH(3) 0.139320 0.103040 1.352094 0.1763 
GARCH(4) 0.292116 0.106922 2.732036 0.0063 
GARCH(5) -0.570967 0.117804 -4.846743 0.0000 
GARCH(6) 0.379015 0.079793 4.749990 0.0000 

R-squared 0.000242     Mean dependent var 0.000801 
Adjusted R-squared -0.001997     S.D. dependent var 0.014083 
S.E. of regression 0.014097     Akaike info criterion -5.938032 
Sum squared resid 0.887082     Schwarz criterion -5.922285 
Log likelihood 13297.35     F-statistic 0.108138 
Durbin-Watson stat 2.113564     Prob(F-statistic) 0.999753 

 
Including the CRISIS variable in the TARCH(1,6) setup, we obtain, 
 
Dependent Variable: RN100 
Method: ML - ARCH 
Date: 05/07/00   Time: 17:16 
Sample(adjusted): 1/05/1983 2/29/2000 
Included observations: 4475 after adjusting endpoints 
Convergence achieved after 81 iterations 

 Coefficient Std. Error z-Statistic Prob.   
C 0.000463 0.000177 2.622442 0.0087 

RN100(-1) 0.121199 0.016944 7.153141 0.0000 
        Variance Equation 

C 1.05E-05 1.03E-06 10.19026 0.0000 
ARCH(1) 0.030622 0.008592 3.563793 0.0004 

(RESID<0)*ARCH(1) 0.147968 0.013271 11.14969 0.0000 
GARCH(1) 0.843259 0.112962 7.464976 0.0000 
GARCH(2) -0.356090 0.174965 -2.035207 0.0418 
GARCH(3) 0.150670 0.183652 0.820407 0.4120 
GARCH(4) 0.211940 0.181610 1.167006 0.2432 
GARCH(5) -0.368510 0.141733 -2.600023 0.0093 
GARCH(6) 0.340857 0.064351 5.296846 0.0000 

CRISIS 3.29E-05 5.95E-06 5.521486 0.0000 
R-squared 0.000501     Mean dependent var 0.000801 
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Adjusted R-squared -0.001962     S.D. dependent var 0.014083 
S.E. of regression 0.014097     Akaike info criterion -5.948503 
Sum squared resid 0.886852     Schwarz criterion -5.931324 
Log likelihood 13321.77     F-statistic 0.203529 
Durbin-Watson stat 2.109754     Prob(F-statistic) 0.997457 

 
The t-statistic for the CRISIS coefficient has a p-value of zero, leading us to reject the null 
hypothesis that the CRISIS coefficient is zero. 
 
Similarly, the Wald test rejects the null hypothesis that the CRISIS coefficient is zero. 
 
Wald Test: 
Equation: TARCH16CRISIS 
Null Hypothesis: C(12) = 0 
F-statistic 30.48681  Probability 0.000000 
Chi-square 30.48681  Probability 0.000000 

 
A likelihood ratio test comparing the general TARCH(1,6) setup (i.e. including the CRISIS 
variable) to a restricted TARCH(1,6) specification (without the CRISIS variable) yields a test 
statistic of 48.8539848 which is much greater than the critical value for a Chi-Squared Distribution 
with one degree of freedom of 3.8414553.  We reject the null hypothesis that the coefficient on 
the CRISIS variable is zero. 
 
Plotting the variance obtained from the TARCH(1,6) specification including the CRISIS variable, 
we see that (with the exception of the Fall of 1987), variance appears to be quite stable until the 
crisis of August 1998. 
 

 
 
Finally, looking at the difference between the TARCH(1,6) variance with and without the inclusion 
of the CRISIS variable, 
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We observe the discrete change in volatility in August 1998 attributable to the Russian default 
crisis. 
 
Conclusion: NASDAQ volatility changed structurally with the Crisis of August 1998 
 
The first person to suggest to me that NASDAQ volatility (and equity volatility, generally) had 
undergone a structural change with the crisis of the Fall of 1998 and the ensuing developments in 
the equity markets was the head of equity derivatives for Lehman Brothers, the bank for which I 
will be working this summer.  It was critically important for him (and everyone working for him) to 
understand this because, if true, this conclusion has far-reaching implications.   
 
I have shown using a variety of specifications of NASDAQ volatility, including Autogregressive 
Conditional Heteroskedasticity, Generalized Autogregressive Conditional Heteroskedasticity and 
Threshold Autoregressive Conditional Heteroskedasticity, that NASDAQ volatility changed 
structurally in August 1998. 
 
Risk management is predicated on forecasts of variance and correlation, developed from 
historical data applying these kinds of models.  The conclusion of this paper is that the 
assumptions underlying the models embedded in current risk management technologies applied 
to the day-to-day operations of most dealer trading desks, hedge fund trading desks and 
corporate treasuries needs to be re-evaluated in order to ensure that it is still appropriate. 
 
Traders who make markets (“market makers”), while already cognizant of the growing difficulty in 
obtaining liquidity, can quantify the additional risk of being involved in market-making roles and 
can justify potentially larger bid-offer spreads in derivative products.  Often, market-makers inherit 
positions, as a consequence of the services they provide.  This analysis suggests that carrying 
such residual positions is riskier than it might appear, based upon long-term historical data.  This 
study suggests a different strategy, a more nimble one to be sure, is appropriate for institutions 
that seek to maintain a presence as market-makers. 
 
Corporate treasures and investors must be prepared to shorten their funding and investment 
horizons and to be opportunistic when developing strategies for their involvement in the equity 
markets.  Enhanced volatility is making day-to-day trading more important, in order to preserve 
capital as well as to take advantage of market opportunities. 


